finished tui

This commit is contained in:
Logan 2024-01-15 20:13:25 -06:00
parent 21244bd086
commit 8b07fd83ea
16 changed files with 2293 additions and 189 deletions

1557
Cargo.lock generated

File diff suppressed because it is too large Load diff

View file

@ -6,9 +6,26 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
log = "0.4"
image = "0.24"
gif = "0.12"
tiny-skia = "0.11"
futures = "0.3"
wgpu = {version="0.18", features=["webgl"]}
bytemuck = {version="1.14", features=["derive"]}
futures-intrusive = "0.5"
pollster = "0.3"
clap = { version = "4.4.16", features = ["derive"] }
indicatif = "0.17"
[dev-dependencies]
flexi_logger = "0.27"
[profile.dev]
opt-level=1
# codegen-units = 1
# lto = "fat"
[profile.release]
opt-level=3
codegen-units = 1
lto = "fat"

BIN
garden.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.7 MiB

View file

Before

Width:  |  Height:  |  Size: 8 MiB

After

Width:  |  Height:  |  Size: 8 MiB

BIN
resources/cube.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 468 KiB

BIN
resources/garden.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

BIN
resources/riley.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2 MiB

BIN
resources/thermo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 489 KiB

449
src/draw.rs Normal file
View file

@ -0,0 +1,449 @@
use wgpu::{
util::{BufferInitDescriptor, DeviceExt},
*,
};
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
struct Vertex {
position: [f32; 2],
uv: [f32; 2],
}
impl Vertex {
pub fn desc() -> wgpu::VertexBufferLayout<'static> {
wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<Self>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x2,
},
wgpu::VertexAttribute {
offset: std::mem::size_of::<[f32; 2]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x2,
},
],
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
pub struct Circle {
pub position: [f32; 2],
pub radius: f32,
pub color: [u8; 4],
}
impl Circle {
fn desc() -> wgpu::VertexBufferLayout<'static> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<Self>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Instance,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 2,
format: wgpu::VertexFormat::Float32x2,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 2]>() as wgpu::BufferAddress,
shader_location: 3,
format: wgpu::VertexFormat::Float32,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 4,
format: wgpu::VertexFormat::Uint32,
},
],
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct GpuUniforms {
width: f32,
height: f32,
}
const SQUARE: &[Vertex] = &[
Vertex {
position: [-1.0, 1.0],
uv: [0.0, 0.0],
},
Vertex {
position: [1.0, 1.0],
uv: [1.0, 0.0],
},
Vertex {
position: [1.0, -1.0],
uv: [1.0, 1.0],
},
Vertex {
position: [1.0, -1.0],
uv: [1.0, 1.0],
},
Vertex {
position: [-1.0, -1.0],
uv: [0.0, 1.0],
},
Vertex {
position: [-1.0, 1.0],
uv: [0.0, 0.0],
},
];
pub struct QuickDraw {
device: Device,
queue: Queue,
width: u32,
height: u32,
uniform_buffer: Buffer,
uniform_bind_group: BindGroup,
texture_desc: TextureDescriptor<'static>,
texture: Texture,
texture_view: TextureView,
instance_count: u64,
instance_buffer: Buffer,
output_buffer: Buffer,
vertex_buffer: Buffer,
pipeline: RenderPipeline,
}
impl QuickDraw {
pub async fn new(width: u32, height: u32, max_circles: u64) -> Self {
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::all(),
..Default::default()
});
let adapter = match instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::HighPerformance,
compatible_surface: None,
..Default::default()
})
.await
{
Some(a) => a,
None => {
eprintln!("Could not find WGPU adapter");
std::process::exit(1);
},
};
let (device, queue) =
match adapter.request_device(&Default::default(), None).await {
Ok(r) => r,
Err(e) => {
eprintln!("Could not find WGPU device:");
eprintln!("{}", e);
std::process::exit(1);
},
};
let uniforms = GpuUniforms {
width: width as f32,
height: height as f32,
};
let uniform_buffer = device.create_buffer_init(&BufferInitDescriptor {
label: Some("Uniform Buffer"),
contents: bytemuck::cast_slice(&[uniforms]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let uniform_layout =
device.create_bind_group_layout(&BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Uniform Bind Group Layout"),
});
let uniform_bind_group =
device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("Uniform Bind Group"),
layout: &uniform_layout,
entries: &[BindGroupEntry {
binding: 0,
resource: uniform_buffer.as_entire_binding(),
}],
});
let texture_desc = wgpu::TextureDescriptor {
size: wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8Unorm,
view_formats: &[wgpu::TextureFormat::Rgba8Unorm],
usage: wgpu::TextureUsages::COPY_SRC
| wgpu::TextureUsages::RENDER_ATTACHMENT,
label: None,
};
let texture = device.create_texture(&texture_desc);
let texture_view = texture.create_view(&Default::default());
let instance_buffer = device.create_buffer(&BufferDescriptor {
label: Some("Instance Buffer"),
usage: BufferUsages::VERTEX | BufferUsages::COPY_DST,
mapped_at_creation: false,
size: max_circles * std::mem::size_of::<Circle>() as u64,
});
let u32_size = std::mem::size_of::<u32>() as u32;
let output_buffer_size = (u32_size * width * height) as wgpu::BufferAddress;
let output_buffer = device.create_buffer(&wgpu::BufferDescriptor {
size: output_buffer_size,
usage: wgpu::BufferUsages::COPY_DST
// this tells wpgu that we want to read this buffer from the cpu
| wgpu::BufferUsages::MAP_READ,
label: None,
mapped_at_creation: true,
});
let vertex_buffer = device.create_buffer_init(&BufferInitDescriptor {
label: Some("Vertex Buffer"),
usage: BufferUsages::VERTEX,
contents: bytemuck::cast_slice(SQUARE),
});
// Shaders
let shader = std::borrow::Cow::Borrowed(include_str!("shader.wgsl"));
let vert = device.create_shader_module(ShaderModuleDescriptor {
label: Some("Vertex Shader"),
source: ShaderSource::Wgsl(shader.clone()),
});
let frag = device.create_shader_module(ShaderModuleDescriptor {
label: Some("Vertex Shader"),
source: ShaderSource::Wgsl(shader),
});
// Pipeline
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&uniform_layout],
push_constant_ranges: &[],
});
let pipeline =
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
multiview: None,
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &vert,
entry_point: "vs_main",
buffers: &[Vertex::desc(), Circle::desc()],
},
fragment: Some(wgpu::FragmentState {
module: &frag,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: texture_desc.format,
blend: Some(wgpu::BlendState::ALPHA_BLENDING),
write_mask: wgpu::ColorWrites::ALL,
})],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
unclipped_depth: false,
conservative: false,
// Setting this to anything other than Fill requires
// Features::NON_FILL_POLYGON_MODE
polygon_mode: wgpu::PolygonMode::Fill,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
});
Self {
device,
queue,
width,
height,
uniform_buffer,
uniform_bind_group,
texture_desc,
texture,
texture_view,
instance_count: 0,
instance_buffer,
output_buffer,
vertex_buffer,
pipeline,
}
}
pub async fn resize(&mut self, width: u32, height: u32, max_circles: usize) {
let texture_desc = wgpu::TextureDescriptor {
size: wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8Unorm,
view_formats: &[wgpu::TextureFormat::Rgba8Unorm],
usage: wgpu::TextureUsages::COPY_SRC
| wgpu::TextureUsages::RENDER_ATTACHMENT,
label: None,
};
let texture = self.device.create_texture(&texture_desc);
let texture_view = texture.create_view(&Default::default());
let u32_size = std::mem::size_of::<u32>() as u32;
let output_buffer_size = (u32_size * width * height) as wgpu::BufferAddress;
let output_buffer = self.device.create_buffer(&wgpu::BufferDescriptor {
size: output_buffer_size,
usage: wgpu::BufferUsages::COPY_DST
// this tells wpgu that we want to read this buffer from the cpu
| wgpu::BufferUsages::MAP_READ,
label: None,
mapped_at_creation: true,
});
self.allocate(max_circles).await;
self.width = width;
self.height = height;
self.texture_desc = texture_desc;
self.texture = texture;
self.texture_view = texture_view;
self.output_buffer = output_buffer;
}
async fn draw_call(&mut self) {
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
let render_pass_desc = wgpu::RenderPassDescriptor {
occlusion_query_set: None,
timestamp_writes: None,
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &self.texture_view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
}),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
};
let mut render_pass = encoder.begin_render_pass(&render_pass_desc);
render_pass.set_pipeline(&self.pipeline);
render_pass.set_bind_group(0, &self.uniform_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..));
render_pass.draw(0..6, 0..self.instance_count as u32);
drop(render_pass);
let u32_size = std::mem::size_of::<u32>() as u32;
encoder.copy_texture_to_buffer(
wgpu::ImageCopyTexture {
aspect: wgpu::TextureAspect::All,
texture: &self.texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
},
wgpu::ImageCopyBuffer {
buffer: &self.output_buffer,
layout: wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: Some(u32_size * self.width),
rows_per_image: Some(self.height),
},
},
self.texture_desc.size,
);
self.output_buffer.unmap();
self.queue.submit(Some(encoder.finish()));
}
async fn read_output_buffer(&self) -> BufferView {
let buffer_slice = self.output_buffer.slice(..);
// NOTE: We have to create the mapping THEN device.poll()
// before await the future. Otherwise the application
// will freeze.
let (tx, rx) = futures_intrusive::channel::shared::oneshot_channel();
buffer_slice.map_async(wgpu::MapMode::Read, move |result| {
tx.send(result).unwrap();
});
// buffer_slice.map_async(wgpu::MapMode::Read, |_| {});
self.device.poll(wgpu::Maintain::Wait);
rx.receive().await.unwrap().unwrap();
buffer_slice.get_mapped_range()
}
// Allocates space for *size* circles, also clears the
// circles buffer
pub async fn allocate(&mut self, size: usize) {
let size = (size * std::mem::size_of::<Circle>()) as u64;
if size >= self.instance_buffer.size() {
self.instance_buffer = self.device.create_buffer(&BufferDescriptor {
label: Some("Instance Buffer"),
usage: BufferUsages::VERTEX | BufferUsages::COPY_DST,
mapped_at_creation: false,
size,
});
}
}
async fn write_circles(&mut self, circles: &[Circle]) {
self.allocate(circles.len()).await;
self.queue.write_buffer(
&self.instance_buffer,
0,
&bytemuck::cast_slice(&circles),
);
// self.queue.submit([]);
self.instance_count = circles.len() as u64;
}
async fn bytes(&self) -> Vec<u8> {
let mut buffer = vec![0; self.output_buffer.size() as usize];
{
let data = self.read_output_buffer().await;
for (i, d) in data.iter().enumerate() {
buffer[i] = *d;
}
}
buffer
}
pub async fn draw_circles(&mut self, circles: &[Circle]) -> Vec<u8> {
self.write_circles(circles).await;
self.draw_call().await;
self.bytes().await
}
}

View file

@ -1,37 +0,0 @@
use tiny_skia::*;
use crate::sim::Circle;
pub fn clear(pixmap: &mut Pixmap) {
let mut black = Paint::default();
black.set_color_rgba8(0, 0, 0, 255);
pixmap.fill_rect(
Rect::from_xywh(0.0, 0.0, pixmap.width() as f32, pixmap.height() as f32)
.unwrap(),
&black,
Transform::identity(),
None,
);
}
pub fn draw_circle(pixmap: &mut Pixmap, circle: &Circle) {
let x = circle.position.x;
let y = circle.position.y;
let radius = circle.radius;
let r = circle.color.0;
let g = circle.color.1;
let b = circle.color.2;
let mut paint = Paint::default();
paint.set_color_rgba8(r, g, b, 255);
let mut brush = PathBuilder::new();
brush.push_circle(x, y, radius);
brush.move_to(x, y);
brush.close();
pixmap.fill_path(
&brush.finish().unwrap(),
&paint,
FillRule::Winding,
tiny_skia::Transform::identity(),
None,
)
}

View file

@ -1,58 +0,0 @@
use std::io::Write;
use image::{ImageBuffer, Rgb};
mod drawing;
mod helper;
mod sim;
fn write_frame<W: Write>(
sim: &sim::Simulation,
encoder: &mut gif::Encoder<&mut W>,
) {
let mut pixbuf = tiny_skia::Pixmap::new(500, 500).unwrap();
drawing::clear(&mut pixbuf);
for index in 0..sim.circles.len() {
let circle = &sim.circles[index];
drawing::draw_circle(&mut pixbuf, circle);
}
let mut frame = gif::Frame::from_rgba(500, 500, pixbuf.data_mut());
frame.delay = 1;
encoder.write_frame(&frame).unwrap();
}
async fn write_frame_async<W: Write>(
sim: &sim::Simulation,
encoder: &mut gif::Encoder<&mut W>,
) {
write_frame(sim, encoder);
}
pub fn generate(image: ImageBuffer<Rgb<u8>, Vec<u8>>) -> Vec<u8> {
let (mut sim, it) = sim::Simulation::simulate_image(500.0, 500.0, 8.0, image);
let mut buffer = Vec::<u8>::new();
let mut encoder = gif::Encoder::new(&mut buffer, 500, 500, &[]).unwrap();
// encoder.set_repeat(gif::Repeat::Infinite).unwrap();
while sim.clock < it {
write_frame(&sim, &mut encoder);
(0..5).for_each(|_| sim.step());
}
drop(encoder);
buffer
}
pub async fn generate_async(image: ImageBuffer<Rgb<u8>, Vec<u8>>) -> Vec<u8> {
let (mut sim, it) =
sim::Simulation::simulate_image_async(500.0, 500.0, 8.0, image).await;
let mut buffer = Vec::<u8>::new();
let mut encoder = gif::Encoder::new(&mut buffer, 500, 500, &[]).unwrap();
// encoder.set_repeat(gif::Repeat::Infinite).unwrap();
while sim.clock < it {
write_frame_async(&sim, &mut encoder).await;
(0..5).for_each(|_| sim.step());
}
drop(encoder);
buffer
}

176
src/main.rs Normal file
View file

@ -0,0 +1,176 @@
#![feature(future_join)]
use std::{cell::RefCell, future::join, io::Write, path::Path, sync::Arc};
use draw::QuickDraw;
use gif::Frame;
use image::{ImageBuffer, Rgb};
use indicatif::{ProgressBar, ProgressStyle};
use log::debug;
pub mod draw;
pub mod helper;
pub mod sim;
pub mod tests;
pub fn make_progress(msg: &'static str, max: u64) -> ProgressBar {
let progress = ProgressBar::new(max);
progress.set_style(ProgressStyle::with_template("{msg} :: {bar}").unwrap());
progress.set_message(msg);
progress
}
const WIDTH: f32 = 512.0;
const HEIGHT: f32 = 512.0;
pub async fn preprocess(
image: ImageBuffer<Rgb<u8>, Vec<u8>>,
radius: f32,
) -> (sim::Simulation, usize, usize) {
let (sim, it, max_circles) =
sim::Simulation::simulate_image(WIDTH, HEIGHT, radius, image).await;
(sim, it, max_circles)
}
pub async fn simulate(
draw: &mut QuickDraw,
mut sim: Simulation,
it: usize,
step: usize,
max_circles: usize,
) -> Vec<Frame<'static>> {
draw.resize(WIDTH as u32, HEIGHT as u32, max_circles).await;
let mut frames = vec![];
let progress =
make_progress("Simulating ", ((it - sim.clock) / sim.substeps) as u64);
while sim.clock < it {
let circles = &sim
.circles
.iter()
.map(|c| draw::Circle {
position: [c.position.x, c.position.y],
radius: c.radius,
color: [c.color.0, c.color.1, c.color.2, 255],
})
.collect::<Vec<draw::Circle>>();
let bytes_future = draw.draw_circles(circles);
let steps = sim.steps(step);
let mut bytes = join!(bytes_future, steps).await.0;
let frame = gif::Frame::from_rgba(WIDTH as u16, HEIGHT as u16, &mut bytes);
frames.push(frame);
progress.inc(step as u64);
}
progress.finish();
frames
}
pub async fn encode(frames: Vec<Frame<'static>>, repeat: bool) -> Vec<u8> {
let mut buffer = Vec::<u8>::new();
let mut encoder =
gif::Encoder::new(&mut buffer, WIDTH as u16, HEIGHT as u16, &[]).unwrap();
let progress = make_progress("Encoding ", frames.len() as u64);
for mut frame in frames {
frame.delay = 1;
encoder.write_frame(&frame).unwrap();
progress.inc(1);
}
progress.finish();
if repeat {
encoder.set_repeat(gif::Repeat::Infinite).unwrap();
}
drop(encoder);
buffer
}
use clap::Parser;
use sim::Simulation;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Input file to process. All common image types are
/// supported, see the `image` crate docs for specific
/// compatibility
#[arg(short = 'i', value_hint = clap::ValueHint::DirPath)]
input: std::path::PathBuf,
/// Output file path ('./output.gif' by default)
#[arg(short = 'o', value_hint = clap::ValueHint::DirPath)]
output: Option<std::path::PathBuf>,
/// How many physics-steps between frames. Affects the
/// speed and length of the animation
#[arg(short = 's')]
step: Option<u32>,
/// Radius of the circle, smaller means more detailed but
/// slower to compute (8.0 by default, must be between
/// 1.0 and 50.0 inclusive)
#[arg(short = 'r')]
radius: Option<f32>,
/// Loop the GIF
#[arg(short = 'l', long = "loop")]
looping: bool,
}
fn open_image<P: AsRef<Path>>(path: P) -> ImageBuffer<Rgb<u8>, Vec<u8>> {
let image = match image::io::Reader::open(path) {
Ok(i) => i,
Err(e) => {
eprintln!("Error opening file for processing: ");
eprintln!("{}", e);
std::process::exit(1);
},
};
let decoded = match image.decode() {
Ok(d) => d,
Err(e) => {
eprintln!("Error processing file: ");
eprintln!("{}", e);
std::process::exit(1);
},
};
decoded.to_rgb8()
}
fn main() {
let args = Args::parse();
let output = args.output.unwrap_or("output.gif".into());
let step = args.step.unwrap_or(20) as usize;
if step == 0 {
eprintln!("Physics step cannot be 0");
std::process::exit(1);
}
let radius = args.radius.unwrap_or(8.0);
if radius < 1.0 || radius > 50.0 {
eprintln!("Invalid radius {}", radius);
eprintln!("Must be between 1.0 and 50.0 inclusive");
std::process::exit(1);
}
let image = open_image(args.input);
let (sim, it, max) = pollster::block_on(preprocess(image, radius));
let mut draw = pollster::block_on(QuickDraw::new(512, 512, 1000));
let frames = pollster::block_on(simulate(&mut draw, sim, it, step, max));
let gif = pollster::block_on(encode(frames, args.looping));
let mut file = match std::fs::File::create(output.clone()) {
Ok(f) => f,
Err(e) => {
eprintln!("Error opening file for writing:");
eprintln!("{}", e);
std::process::exit(1);
},
};
match file.write(&gif) {
Ok(_) => {
println!("Successfully created file at '{}'", output.display());
},
Err(e) => {
eprintln!("Error writing output file: ");
eprintln!("{}", e);
std::process::exit(1);
},
};
}

58
src/shader.wgsl Normal file
View file

@ -0,0 +1,58 @@
struct Uniforms {
width: f32, height: f32,
}
@group(0) @binding(0) var<uniform> uniforms: Uniforms;
struct VertexInput {
@location(0) position: vec2<f32>,
@location(1) uv: vec2<f32>,
@location(2) offset: vec2<f32>,
@location(3) radius: f32,
@location(4) color: u32,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) uv: vec2<f32>,
@location(1) color: vec4<f32>,
}
fn get_color(input: u32) -> vec4<f32> {
let r = f32(input & 255u) / 255.0;
let g = f32((input & (255u << 8u)) >> 8u) / 255.0;
let b = f32((input & (255u << 16u)) >> 16u) / 255.0;
let a = f32((input & (255u << 24u)) >> 24u) / 255.0;
return vec4<f32>(r, g, b, a);
}
@vertex
fn vs_main(
model: VertexInput
) -> VertexOutput {
var out: VertexOutput;
var x = (model.position.x * model.radius) - uniforms.width / 2.0;
x += model.offset.x;
var y = (model.position.y * model.radius) - uniforms.height / 2.0;
y += model.offset.y;
var norm_x = x / (uniforms.width / 2.0);
var norm_y = -y / (uniforms.height / 2.0);
out.clip_position = vec4<f32>(norm_x, norm_y, 0.0, 1.0);
out.uv = model.uv;
out.color = get_color(model.color);
return out;
}
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
var x = in.uv.x - 0.5;
var y = in.uv.y - 0.5;
var d = sqrt(x * x + y * y) * 2.0;
if d > 1.1 {
discard;
} else if d > 1.0 {
return vec4<f32>(in.color.xyz, 1.1 - d);
} else {
return in.color;
}
}

View file

@ -1,6 +1,6 @@
use std::hash::{Hash, Hasher};
use crate::helper::*;
use crate::{helper::*, make_progress};
use image::{ImageBuffer, Rgb};
pub struct Circle {
@ -16,7 +16,7 @@ pub struct Simulation {
pub colors: Vec<Color>,
pub max_circles: usize,
pub clock: usize,
substeps: usize,
pub substeps: usize,
rand_seed: usize,
timescale: f32,
circle_radius: f32,
@ -27,6 +27,8 @@ pub struct Simulation {
}
impl Simulation {
pub const POST_PROCESS: usize = 120;
pub fn new(
width: f32,
height: f32,
@ -35,12 +37,12 @@ impl Simulation {
) -> Self {
let area = width * height;
let circle_area = circle_radius.powi(2) * std::f32::consts::PI;
let approx_max = ((area / circle_area).round() * 1.0) as usize;
let approx_max = ((area / circle_area).round() * 0.9) as usize;
Self {
circles: Vec::with_capacity(approx_max),
max_circles: approx_max,
timescale: 1.0 / 60.0,
substeps: 4,
substeps: 8,
colors: vec![Color(255, 255, 255); approx_max],
clock: rand_seed,
rand_seed,
@ -48,12 +50,15 @@ impl Simulation {
radius_variance: circle_radius * 0.1,
area_size: (width, height),
gravity: height,
response_mod: 0.4,
response_mod: 0.9,
}
}
#[inline]
fn assign_colors_from_image(&mut self, img: ImageBuffer<Rgb<u8>, Vec<u8>>) {
async fn assign_colors_from_image(
&mut self,
img: ImageBuffer<Rgb<u8>, Vec<u8>>,
) {
let (width, height) = (img.width() as f32 - 1.0, img.height() as f32 - 1.0);
for (pos, index) in self.circles.iter().map(|c| (c.position, c.index)) {
let img_x =
@ -68,53 +73,37 @@ impl Simulation {
}
#[inline]
pub fn simulate_image(
pub async fn simulate_image(
width: f32,
height: f32,
circle_radius: f32,
img: ImageBuffer<Rgb<u8>, Vec<u8>>,
) -> (Self, usize) {
) -> (Self, usize, usize) {
let image_hash = ({
let mut s = std::hash::DefaultHasher::new();
img.hash(&mut s);
s.finish()
} % 1204) as usize;
let mut sim = Simulation::new(width, height, circle_radius, image_hash);
let progress = make_progress(
"Preprocessing",
(sim.max_circles + Self::POST_PROCESS) as u64,
);
while sim.circles() < sim.max_circles {
sim.step();
sim.step().await;
progress.inc(2);
}
(0..120).for_each(|_| sim.step());
for _ in 0..Self::POST_PROCESS {
sim.step().await;
progress.inc(1);
}
progress.finish();
let total_iterations = sim.clock;
sim.assign_colors_from_image(img);
let max_circles = sim.circles.len();
sim.assign_colors_from_image(img).await;
sim.circles.clear();
sim.clock = sim.rand_seed;
(sim, total_iterations)
}
#[inline]
pub async fn simulate_image_async(
width: f32,
height: f32,
circle_radius: f32,
img: ImageBuffer<Rgb<u8>, Vec<u8>>,
) -> (Self, usize) {
let image_hash = ({
let mut s = std::hash::DefaultHasher::new();
img.hash(&mut s);
s.finish()
} % 1204) as usize;
let mut sim = Simulation::new(width, height, circle_radius, image_hash);
while sim.circles() < sim.max_circles {
sim.step_async().await;
}
for _ in 0..120 {
sim.step_async().await
}
let total_iterations = sim.clock;
sim.assign_colors_from_image(img);
sim.circles.clear();
sim.clock = sim.rand_seed;
(sim, total_iterations)
(sim, total_iterations, max_circles)
}
#[inline]
@ -155,7 +144,7 @@ impl Simulation {
// Insertion sort
#[inline]
fn sort(&mut self) {
async fn sort(&mut self) {
if self.circles.len() == 1 {
return;
}
@ -170,7 +159,7 @@ impl Simulation {
}
#[inline]
fn integrate(&mut self) {
async fn integrate(&mut self) {
let delta = self.timescale * (1.0 / self.substeps as f32);
let gravity = Vector2::new(0.0, self.gravity) * delta.powi(2);
self.circles.iter_mut().for_each(|circle| {
@ -181,7 +170,7 @@ impl Simulation {
}
#[inline]
fn collide(&mut self) {
async fn collide(&mut self) {
for i in 0..self.circles.len() {
// Apply gravity
for j in i..self.circles.len() {
@ -229,7 +218,7 @@ impl Simulation {
}
#[inline]
pub fn step(&mut self) {
pub async fn step(&mut self) {
if self.circles.len() < self.max_circles {
self.launch();
}
@ -237,42 +226,22 @@ impl Simulation {
self.launch2();
}
(0..self.substeps).for_each(|_| {
for _ in 0..self.substeps {
self.constrain_rect();
self.sort();
self.collide();
self.integrate();
self.sort().await;
self.collide().await;
self.integrate().await;
self.clock += 1;
});
}
}
#[inline]
pub async fn step_async(&mut self) {
if self.circles.len() < self.max_circles {
self.launch();
pub async fn steps(&mut self, steps: usize) {
for _ in 0..steps {
self.step().await;
}
if self.circles.len() < self.max_circles {
self.launch2();
}
(0..self.substeps).for_each(|_| {
self.constrain_rect();
self.sort();
self.collide();
self.integrate();
self.clock += 1;
});
}
// #[inline]
// pub fn draw(&self, d: &mut RaylibDrawHandle) {
// self
// .circles
// .iter()
// .map(|c| (c.position, c.radius, c.color))
// .for_each(|(pos, radius, color)| d.draw_circle_v(pos,
// radius, color)); }
pub fn circles(&self) -> usize {
self.circles.len()
}

19
src/tests.rs Normal file
View file

@ -0,0 +1,19 @@
#[cfg(test)]
#[test]
fn bench_async() {
use std::io::Write;
flexi_logger::Logger::try_with_str("debug").unwrap();
let image = image::io::Reader::open(
"resources/mona
lisa.png",
)
.unwrap()
.decode()
.unwrap()
.to_rgb8();
// let gif = pollster::block_on(crate::generate_async(image, None));
// let mut file =
// std::fs::File::create("test.gif").unwrap();
// file.write(&gif).unwrap();
}

BIN
test.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB